Info
Info

Continental launches series production of technologies for Robo-Taxis

News

Continental’s researchers and developers in Europe, North America and Asia are working to make proven series production technologies suitable for use in robo-taxis.

Info

Already this year, Continental's technology for driverless vehicles will be in production for the first time in French company EasyMile's EZ10 autonomous shuttle. Continental has held a stake in this driverless vehicle manufacturer since 2017.

“The technological building blocks that enable robo-taxis to operate are available in principle and have been tried and tested in practice. However, we now have to intelligently, safely, and efficiently put them together to form an overall picture,” said Andree Hohm, Director of Driverless Mobility at Continental.

The central development platform for this work is the CUbE, a small driverless shuttle based on the EZ10 platform. The aim is not to develop the CUbE into a production vehicle, but to get a range of Continental technologies, such as brake systems and surroundings sensors market-ready so that they can be used in the series production of robo-taxis.

For a robo-taxi to drive autonomously, it must first detect its surroundings reliably, accurately, and completely. It does this using vehicle surroundings sensors such as cameras, radar, and lasers. With the aid of the CUbE, Continental has developed a production-ready radar system especially for driverless vehicles. The vehicle can generate a 360-degree image of its environment by combining the data from different sensor technologies. This, in turn, ensures redundancy and a higher level of accuracy not previously achieved, because radar systems function independent of visibility conditions and can even see through objects such as parked cars and detect the street corner behind them.

Continental's radar sensor, which will be used in the EZ10 autonomous shuttle from EasyMile later this year, detects the vehicle's environment within a radius of up to 200 metres. The vehicle is equipped with a total of seven radar sensors, as well as laser sensors and cameras. This allows the location to be precisely determined and, at the same time, early detection of obstacles and potentially critical situations. Tried-and-tested products from high-volume car production are intelligently networked and adapted to one another to make them suitable for a completely new type of mobility.

A dual safeguard, at minimum, is not only a necessity for monitoring the surroundings in driverless vehicles, but also for the brake systems. Continental's portfolio includes suitable technologies, such as the MK C1 one-box brake system, which has been in series production since 2016 and combines ABS, ESC, and a brake booster. For use in autonomous vehicles, the one-box brake system is combined with a Hydraulic Brake Extension that can, in conjunction with ABS, safely brake the vehicle in the highly unlikely event of primary brake failure. Full braking functionality is therefore guaranteed. Both systems are comprehensively tested, industrialized, and reliable.

In the new combination, they form the redundant and production-ready MK C1 HAD brake system for highly automated driving and for driverless mobility applications. The MK C1 HAD offers an additional safety benefit in that the electromechanically generated maximum brake pressure is achieved after only 150 milliseconds. This means that automated vehicles without driver intervention can be brought to a standstill more rapidly than would be possible with conventional brake systems.

The ABS function represents an additional feature, because robo-taxis have not been equipped with a system of this type until now. The technology will become especially important when driverless vehicles are on the road in wintry road conditions. Vehicle dynamics systems such as ABS, ESC, and traction control will enable vehicles to pull away safely on icy roads and provide maximum traction on slippery slopes or during braking.

In addition, robo-taxis in the form of small buses are typically higher and have a higher centre of gravity than conventional cars to allow passengers to enter and exit the vehicle comfortably in an upright position. This is where a predictive driving dynamics system comes into play to ensure safe and stable handling in bends. This, too, is part of the range of innovative and high-performance vehicle control systems from Continental.

The development of these and other technologies for driverless vehicles is being advanced by a global network comprising a total of five Continental centres of excellence in Germany, China, Japan, Singapore, and the US. At these locations, research and development work is carried out with different emphases, but all make use of the CUbE platform and always with an eye on the common goal of providing suitable technologies for future generations of safe and efficient robo-taxis.

In closed-off areas, such as on a company premises or on special routes in clearly defined urban areas, driverless mobility services are already in operation today. However, it is likely to take another decade or so before robo-taxis become a common sight in normal traffic. Numerous additional development steps will be necessary to make the vehicles safer and more suitable for everyday use. One of these development steps are real-life pilot operations where development opportunities for fully autonomous driving in urban areas are investigated.

For this purpose, Continental, EasyMile, Oakland University, and the City of Auburn Hills in Michigan are set to implement the pilot deployment of an autonomous shuttle thanks to a grant from Michigan's PlanetM mobility initiative, which supports companies in testing their technologies for future mobility. The pilot will begin in late August and last up to six months. The driverless shuttle will be deployed on the grounds of Oakland University, which is a sprawling and hilly college campus where navigation between buildings can be a challenge for students and faculty. The autonomous shuttle pilot service is a perfect solution for everyone who uses the campus.

During the pilot, Continental will integrate its Zonar technology, which enables vehicle inspections via the RFID technology EVIR. The EVIR system captures, transmits, and records inspection, compliance, and maintenance data to the operator. Moreover, the Zonar Z Pass technology detects where and when the passengers enter and exit the vehicle. The aim of this pilot project is to gather experience in the operation of driverless vehicles and to collect valuable, empirical data that will be integrated in the technological development of these vehicles.

Furthermore, the technologies necessary for this purpose must be designed in a manner suitable for production on an industrial scale. From a regulatory and social viewpoint there are still several questions that need to be clarified and solutions developed before robo-taxis become widely established in the streetscape.


The Latest News, Brought To You By
Continental launches series production of technologies for Robo-Taxis
Modified on Wednesday 10th July 2019
Find all articles related to:
Continental launches series production of technologies for Robo-Taxis
TaaS Technology Magazine
Info
Faction Raises $4.3M To Develop Light EV Driverless Fleets
AAM And REE Automotive To Jointly Develop New Electric Propulsion System
Toshiba Expands Scope Of Its Solid-State LiDAR Solution To Address Transportation Infrastructure Monitoring
EasyMile Raises €55 Million In Series B Round
Fisker Launches Resource For Environmental, Social, And Governance Policy, Practices And Reporting And
Daimler Truck AG And Volvo Group Fully Committed To Hydrogen-based Fuel-cells – Launch Of New Joint Venture Cellcentric
SEAT Introduces Autonomous Mobile Robots In Its Barcelona Factory
Dr. Matthias Jurytko Takes Over The Management Of The Fuel Cell Joint Venture Cellcentric
Renault Group And Plug Power Inc. Launch HYVIA
FEV Successful In Designing Low Emission, Efficient Hydrogen Internal Combustion Engine
Nikola And Total Transportation Services Inc. Sign LOI For 100 Nikola Trucks
PCB Depaneling: Laser Technology Improves Quality And Efficiency For Automotive Applications
Nano One And Johnson Matthey Enter Into A Joint Development Agreement For Lithium-ion Battery Materials
Former Google Head Of Energy Strategy Neha Palmer Joins TeraWatt Infrastructure
Faraday Future Selects Velodyne As Exclusive Lidar Supplier For Flagship FF 91
Pininfarina And MT Distribution Join Forces To Create A New Range Of Vehicles For Urban Electric Micro-mobility
HELLA Brings Latest Passenger Car 77GHz Radar Technology Into Series Production
Construction Begins On First-of-its-kind Electric Vehicle Battery Technology Centre And Pilot Line
GHD Survey Reveals Half Of British Consumers Are Considering An Electric Vehicle In Next Five Years
Uber, Mobilize, RATP And Blablacar Join Forces For Sustainable Mobility By Launching The “Mobilité360” Project
Ford Boosts Investment In Solid Power
Iteris Awarded $3.3 Million Contract By City Of Modesto For Smart Mobility Initiative
Gilbarco Veeder-Root Expands E-mobility Platform With Launch Of EVerse
European Launch: NIO To Sell Smart Premium EVs In Norway
Info
Info
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the TaaS Magazine, the TaaS Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info
{taasPodcastNotification} Array
Live Event