Info
Info

Ouster partners with Playment and Scale.AI for advanced deep learning labelling

News
Ouster, a manufacturer of high-resolution lidar sensors, announced a partnership with data labelling companies Playment and Scale.AI to rapidly accelerate the implementation of deep learning models in self-driving vehicles and other real-time robotics by solving their biggest bottleneck: accurate, multi-layer labeled training data.
Info

The faster development enabled by the partnership will help put safer autonomous vehicles on the road sooner.

At the core of the partnership is Ouster's OS-1 lidar sensor. Ouster's multi-beam flash lidar technology outputs intensity, range, and ambient images where every 2D pixel corresponds to a 3D point, which allows its data labeling partners to easily translate between 2D and 3D point clouds. It is a major step forward for machine learning and deep learning algorithms in self driving cars.

The teams have worked together for months to establish a common data format and labelling process that combines the image-like output from Ouster's lidar sensors and the capabilities of Playment and Scale.AI's labelling toolchains to save perception teams both time and money. The new approach removes some of the most difficult and time-consuming aspects of data labeling for companies working on everything from autonomous vehicles to industrial robotics and drones.

The initial result of the partnership is a dramatic simplification in the process required to feed lidar data through the data annotation APIs provided by Playment and Scale.AI, and promises to reduce the cost of data labeling by up to 50%.

Ouster's sensors output data in a 2D camera-like format that allows it to be labeled with a process that builds on the camera labelling tool chain. By eliminating the need to label both 2D and 3D data sets independently, this partnership reduces the amount of annotation needed by the annotators, which ultimately reduces the cost to the customer.

A standardised, efficient data format reduces the amount of data and associated transfer costs by up to 97%. Data volumes are already so high that some customers must physically ship hard drives to their labeling partners. Ouster eliminates these cumbersome and inefficient workflows.

Not only is sensor fusion cumbersome and error prone - it also drives up the cost of data labeling. Ouster's lidar sensor outputs 2D camera-like imagery in addition to 3D data, eliminating the need to fuse lidar and camera outputs to generate synchronous 2D and 3D data. Customers can now feed a single image to Playment or Scale.AI and receive both 2D instance and semantic segmentation masks and 3D bounding boxes.

“We've been working with Playment and Scale.AI for many months now, and it's deeply satisfying to go public with this partnership knowing our customers will benefit so much from our efforts. Both Playment and Scale.AI are on the cutting edge of data labeling technology and they've reimagined their lidar toolchains around our senor's unique 2D-3D technology to improve accuracy, reduce costs, and eliminate friction. Together with our partners, we're revolutionising the hardware, software, and services that turn 3D data into actionable inference, with the goal of democratising access to lidar technology,” said Ouster CEO Angus Pacala.

Playment cofounder Ajinkya Malasane said, “We're excited about what this technology means for our customers and our business. We think that this partnership will accelerate the timeline toward safer, more reliable, and more fully autonomous vehicles on the road.”

“Whether they are creating models for autonomous vehicles, drones, robots, or retail stores, our customers get a huge benefit from higher resolution, more accurate data,” said Scale.AI CEO Alexandr Wang.


The Latest News, Brought To You By
Ouster partners with Playment and Scale.AI for advanced deep learning labelling
Modified on Tuesday 4th December 2018
Find all articles related to:
Ouster partners with Playment and Scale.AI for advanced deep learning labelling
TaaS Technology Magazine
Info
Ricardo To Collaborate With Authorities In Chinese City Of Shangrao To Develop New NEVs
Alfa Power Launch Its Ultra-fast 120kW EV Charger In UK
Rohde & Schwarz And Huawei Conduct Field Trial Precision Latency Measurements For 5G C-V2X Communication
AVL And TNO Collaborate To Accelerate Validation Of Self-driving Vehicles Technologies
Mercedes-Benz To Offer 130 Electrified Models By 2022
EU Partners With MOBILus Consortium To Develop A Community On Urban Mobility
Qiantu Motor To Bring Its EVs To The North American Market
Audi Expands Coverage Of Its Premium Mobility Service, On Demand+
Scania Develops Fuel Cell Based Refuse Truck
JAC Volkswagen To Open New R&D Centre To Better Serve Customers In China
DeepMap To Provide HD Mapping Solutions For Einride And Ridecell
Innogy To Supply Charging Infrastructure To Skidata Italia
KBA Approves Series Production Of DHL’s Electric Van, The Street Scooter Work
HERE And INRIX Partner To Further The Future Of Mobility
Opel To Launch Electrified Version Of The Grandland X And Corsa In 2019
Samsung And KOTSA To Build 5G–V2X Test Zone At K-City
Delphi And Valeo Join The Auto-ISAC Cybersecurity Platform
Nissan Inaugurates Its Global Digital Hub In India
Tier IV, Apex.AI And Linaro Launch The Autoware Foundation
BMW Group Appoints New Lead For Its Driver Assistance And Autonomous Driving Development Department
Hyundai Unveils Its New ‘FCEV Vision 2030’ Plan
SoftBank Makes Fresh Investment In Tech-enabled Parking Service, ParkJockey
Neil M. Schloss To Join Karamba Security’s Board Of Directors
Bosch Testing Fully Renewable Diesel Fuel
Info
Info
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the TaaS Magazine, the TaaS Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info